
This document corresponds to the web version of the VV&A RPG Reference Document of the same name
and date. It has been modified for printing.

V&V Techniques

RPG Reference Document

8/15/011

Table of Contents

V&V Technique Taxonomy 1

Informal V&V Techniques 3

Audit 3

Desk Checking / Self-inspection 3

Face Validation 4

Inspection 4

Review 5

Turing Test 6

Walkthroughs 6

Inspection vs Walkthrough vs Review 6

Static V&V Techniques 7

Cause-Effect Graphing 7

Control Analysis 8

Data Analysis 9

Fault/Failure Analysis 9

Interface Analysis 9

Semantic Analysis 10

Structural Analysis 10

Symbolic Evaluation 11

Syntax Analysis 12

Traceability Assessment 12

Dynamic V&V Techniques 12

Acceptance Testing 13

Alpha Testing 13

Assertion Checking 13

Beta Testing 14

1 This document replaces the 11/30/00 version. It contains formatting and minor editorial changes.

This document corresponds to the web version of the VV&A RPG Reference Document of the same name
and date. It has been modified for printing.

Table of Contents (continued)

Dynamic Testing Techniques (continued

Bottom-Up Testing 14

Comparison Testing 15

Compliance Testing 15

Debugging 16

Execution Testing 16

Fault/Failure Insertion Testing 17

Field Testing 17

Functional Testing 17

Graphical Comparison 18

Interface Testing 18

Object-Flow Testing 20

Partition Testing 20

Predictive Validation 20

Product Testing 21

Regression Testing 21

Sensitivity Analysis 21

Special Input Testing 21

Statistical Techniques 23

Structural Testing 25

Submodel/Module Testing 27

Symbolic Debugging 27

Top-Down Testing 27

Visualization/Animation 28

Formal Techniques 28

Guidelines for Selecting V&V Techniques 30

References 36

RPG References in this Document 41

Additional References 41

Appendix A: Validation Procedure Using Simultaneous Confidence Intervals A-1

Appendix B: Selecting V&V Techniques for Defect Detection B-1

V&V Techniques 8/15/01
RPG Reference Document 1

V&V Technique Taxonomy

This document describes over seventy-five V&V techniques and eighteen statistical
techniques that can be used for model validation. Most of these techniques are derived
from software engineering; the remaining are specific to the modeling and simulation
(M&S) field. The software V&V techniques applicable to M&S V&V are presented in
terms understandable by an M&S technical person. Some software V&V techniques
have been modified for use in M&S V&V. The term testing is used frequently when
referring to the implementation of these techniques because V&V involves the testing of
the model or simulation to assess its credibility.

The V&V techniques discussed in this document are separated into four categories:
informal, static, dynamic, and formal.

• Informal V&V techniques are among the most commonly used. They are
called informal because their tools and approaches rely heavily on human
reasoning and subjectivity without stringent mathematical formalism.

• Static V&V techniques assess the accuracy of the static model design and
source code. Static techniques do not require machine execution of the model,
but mental execution can be used. The techniques are very popular and widely
used, and many automated tools are available to assist in the V&V process.
Static techniques can reveal a variety of information about the structure of the
model, the modeling techniques used, data and control flow within the model,
and syntactical accuracy (Whitner and Balci, 1989).

• Dynamic V&V techniques require model execution; they evaluate the model
based on its execution behavior. Most dynamic V&V techniques require model
instrumentation, the insertion of additional code (probes or stubs) into the
executable model to collect information about model behavior during execution.
Dynamic V&V techniques usually are applied in three steps:

− executable model is instrumented

− instrumented model is executed

− model output is analyzed and dynamic model behavior is evaluated
• Formal V&V techniques (or formal methods) are based on formal

mathematical proofs or correctness and are the most thorough means of model
V&V. The successful application of formal methods requires the model
development process to be well defined and structured. Formal methods should
be applied early in the model development process to achieve maximum
benefit. Because formal techniques require significant effort they are best
applied to complex problems, which cannot be handled by simpler methods.

Although these categories share many of the same characteristics and individual V&V
techniques can overlap from one to another, the complexity and the mathematical and
logical formalism involved increase as the category becomes more formal.

V&V Techniques 8/15/01
RPG Reference Document 2

The taxonomy table below lists all the techniques discussed. They are grouped
according to the categories described above and hot links are provided so the reader
can select by either category or technique. The categories are also identified by color-
coding.

Verification and Validation Technique Taxonomy
Informal Techniques

audit desk check face validation

review Turing test walkthrough
inspection

Static Techniques
control analyses data analyses

calling
structure control flowcause-effect graphing
concurrent
process

state
transition

data
dependency data flow

fault/failure analysis

interface analyses semantic analysis structural analysis symbolic evaluation
model

interface
user

interface syntax analysis traceability assessment
Dynamic Techniques

acceptance test alpha test assertion check beta test
compliance tests

authorization security bottom-up test comparison test
performance standards

debugging

execution tests
monitor profile trace

fault / failure insertion
test field test functional test

(Black Box test)

interface tests graphical comparison
data model user

object-flow test partition test

predictive validation product test regression test sensitivity analysis

special input tests structural tests
(White Box tests)

statistical
techniques

boundary value real-time input branch loop
equivalence partitioning self-driven input condition path
extreme input stress
invalid input trace-driven input data flow statement

submodel / module
test

symbolic debugging top-down test visualization / animation
Formal Techniques

induction inference logical deduction inductive assertion

lambda calculus predicate calculus predicate
transformation

proof of
correctness

V&V Techniques 8/15/01
RPG Reference Document 3

Informal V&V Techniques

Informal techniques are among the most commonly used. They are called informal
because they rely heavily on human reasoning and subjectivity without stringent
mathematical formalism. The informal label should not imply, however, a lack of
structure or formal guidelines in their use. In fact, these techniques should be applied
using well-structured approaches under formal guidelines. They can be very effective if
employed properly.

Audit

An audit is a verification technique performed throughout the development life cycle of a
new model or simulation or during modification made to legacy models and simulations.
An audit is a staff function that serves as the "eyes and ears of management" [Perry,
1995, p. 26]. An audit is undertaken to assess how adequately a model or simulation is
used with respect to established plans, policies, procedures, standards, and guidelines.
Auditing is carried out by holding meetings and conducting observations and
examinations [Hollocker, 1987]. The process of documenting and retaining sufficient
evidence about the substantiation of accuracy is called an audit trail [Perry, 1995].
Auditing can be used to establish traceability within the simulation. When an error is
identified, it should be traceable to its source via its audit trail.

Desk Checking / Self-inspection

Desk checking, or self-inspection, is an intense examination of a working product or
document to ensure its correctness, completeness, consistency, and clarity. It is
particularly useful during requirements verification, design verification, and code
verification. Desk checking can involve a number of different tasks, such as those
listed in the table below [Beizer, 1990].

Typical Desk Checking Activities

• syntax review
• cross-reference examination
• convention violation assessment
• detailed comparison to specifications
• code reading
• control flowgraph analysis
• path sensitizing

To be effective, desk checking should be conducted carefully and thoroughly,
preferably by someone not involved in the actual development of the product or
document, because it is usually difficult to see one’s own errors [Adrion et al., 1982].

V&V Techniques 8/15/01
RPG Reference Document 4

Face Validation

The project team members, potential users of the model, and subject matter experts
(SMEs) review simulation output (e.g., numerical results, animations, etc.) for
reasonableness. They use their estimates and intuition to compare model and system
behaviors subjectively under identical input conditions and judge whether the model
and its results are reasonable [Hermann, 1967].

Informal Techniques Example 1:

Face validation was used in the development of a simulation of the U.S. Air Force
(AF) manpower and personnel system to ensure it provided an adequate
representation. The simulation was designed to provide AF policy analysts with a
system-wide view of the effects of various proposed personnel policies. The
simulation was executed under the baseline personnel policy and results shown to
AF analysts and decision-makers who subsequently identified some discrepancies
between the simulation results and perceived system behavior. Corrections were
made and additional face validation evaluations were conducted until the simulation
appeared to closely approximate current AF policy. The face validation exercise
both demonstrated the validity of the simulation and improved its perceived
credibility [Morrison]

Face validation is regularly cited in V&V efforts within the Department of Defense (DoD)
M&S community. However, the term is commonly misused as a more general term and
misapplied to other techniques involving visual reviews (e.g., inspection, desk check,
review). Face validation is useful mostly as a preliminary approach to validation in the
early stages of development. When a model is not mature or lacks a well-documented
VV&A history, additional validation techniques may be required.

Inspection

Inspection is normally performed by a team that examines the product of a particular
simulation development phase (e.g., M&S requirements definition, conceptual model
development, M&S design). A team normally consists of four or five members,
including a moderator or leader, a recorder, a reader (i.e., a representative of the
Developer) who presents the material being inspected, the V&V Agent; and one or
more appropriate subject matter experts (SMEs). Normally, an inspection consists of
five phases: overview, preparation, inspection, rework, and follow-up [Schach, 1996].

Informal Techniques Example 2:

The team inspecting a simulation design might include a moderator; a recorder; a
reader from the simulation design team who will explain the design process and
answer questions about the design; a representative of the Developer who will be
translating the design into an executable form; SMEs familiar with the requirements
of the application, and the V&V Agent.

• Overview -- The simulation design team prepares a synopsis of the design. This
and related documentation (e.g., problem definition and objectives, M&S
requirements, inspection agenda) is distributed to all members of the inspection
team.

http://www.msiac.dmso.mil/vva/Special_topics/SME/default.htm

V&V Techniques 8/15/01
RPG Reference Document 5

• Preparation --The inspection team members individually review all the
documentation provided. The success of the inspection rests heavily on the
conscientiousness of the team members in their preparation.

• Inspection -- The moderator plans and chairs the inspection meeting. The reader
presents the product and leads the team through the inspection process. The
inspection team can be aided during the faultfinding process by a checklist of
queries. The objective is to identify problems, not to correct them. At the end of
the inspection the recorder prepares a report of the problems detected and
submits it to the design team.

• Rework --The design team addresses each problem identified in the report,
documenting all responses and corrections.

• Follow-up -- The moderator ensures that all faults and problems have been
resolved satisfactorily. All changes should be examined carefully to ensure that no
new problems have been introduced as a result of a correction.

Review

A review is intended to evaluate the simulation in light of development standards,
guidelines, and specifications and to provide management, such as the User or M&S
PM, with evidence that the simulation development process is being carried out
according to the stated objectives. A review is similar to an inspection or walkthrough,
except that the review team also includes management. As such, it is considered a
higher-level technique than inspection or walkthrough.

A review team is generally comprised of management-level representatives of the User
and M&S PM. Review agendas should focus less on technical issues and more on
oversight than an inspection. The purpose is to evaluate the model or simulation
relative to specifications and standards, recording defects and deficiencies. The V&V
Agent should gather and distribute the documentation to all team members for
examination before the review. The V&V Agent should also prepare a set of indicators
to measure such as those listed in the table below.

Review Indicators

• appropriateness of the problem definition and
M&S requirements

• adequacy of all underlying assumptions
• adherence to standards
• modeling methodology
• quality of simulation representations
• model structure
• model consistency
• model completeness
• documentation

The V&V Agent may also prepare a checklist to help the team focus on the key points.
The result of the review should be a document recording the events of the meeting,

V&V Techniques 8/15/01
RPG Reference Document 6

deficiencies identified, and review team recommendations. Appropriate actions should
then be taken to correct any deficiencies and address all recommendations.

Turing Test

The Turing test is used to verify the accuracy of a simulation by focusing on differences
between the system being simulated and the simulation of that system. System experts
are presented with two blind sets of output data, one obtained from the model
representing the system and one from the system, created under the same input
conditions and are asked to differentiate between the two. If they cannot differentiate
between the two, confidence in the model’s validity is increased [Schruben, 1980;
Turing, 1963; Van Horn, 1971]. If they can differentiate between them, they are asked
to describe the differences. Their responses provide valuable feedback regarding the
accuracy and appropriateness of the system representation.

Walkthroughs

The main thrust of the walkthrough is to detect and document faults; it is not a
performance appraisal of the Developer. This point must be made to everyone involved
so that full cooperation is achieved in discovering errors. A typical structured
walkthrough team consists of

• Coordinator, often the V&V Agent, who organizes, moderates, and follows up
the walkthrough activities

• Presenter, usually the Developer
• Recorder
• Maintenance oracle, who focuses on long-term implications
• Standards bearer, who assesses adherence to standards
• Accreditation Agent, who reflects the needs and concerns of the User
• Additional reviewers such as the M&S PM and auditors

Except for the Developer, none of the team members should be involved directly in the
development effort. [Adrion et al., 1982; Deutsch, 1982; Myers, 1978, 1979; Yourdon,
1985].

Inspection vs Walkthrough vs Review

Inspections differ significantly from walkthroughs. An inspection is a five-step,
formalized process. The inspection team uses the checklist approach for uncovering
errors. A walkthrough is less formal, has fewer steps, and does not use a checklist to
guide or a written report to document the team’s work. Although the inspection process
takes much longer than a walkthrough, the extra time is justified because an inspection
is extremely effective for detecting faults early in the development process when they

V&V Techniques 8/15/01
RPG Reference Document 7

are easiest and least costly to correct [Ackerman et al., 1983; Beizer, 1990; Dobbins,
1987; Knight and Myers, 1993; Perry, 1995; Schach, 1996].

Inspections and walkthroughs concentrate on assessing correctness. Reviews seek to
ascertain that tolerable levels of quality are being attained. The review team is more
concerned with design deficiencies and deviations from the conceptual model and M&S
requirements than it is with the intricate line-by-line details of the implementation. The
focus of a review is not on discovering technical flaws but on ensuring that the design
and development fully and accurately address the needs of the application. For this
reason, the review process is effective early on during requirements verification and
conceptual model validation. [Hollocker, 1987; Perry, 1995; Sommerville, 1996;
Whitner and Balci, 1989].

Static V&V Techniques

Static V&V techniques assess the accuracy of the static model design and source code.
They can reveal a variety of information about the structure of the model, modeling
techniques used, data and control flows within the model, and syntactical accuracy
[Whitner and Balci, 1989]. Static techniques do not require machine execution of the
model but mental execution or rehearsal is often involved. Static V&V techniques are
widely used and many automated tools are available. For example, the simulation
language compiler is itself a static V&V tool.

Cause-Effect Graphing

Cause-effect graphing addresses the question of what causes what in the model
representation. Causes and effects are first identified in the system being modeled and
then their representations are examined in the model specification.

Static Techniques Example 1:

In the simulation of a traffic intersection, the following causes and effects may be
identified:

• the change of a light to red immediately causes the vehicles in the traffic lane to
stop

• an increase in the duration of a green light causes a decrease in the average
waiting time of vehicles in the traffic lane

• an increase in the arrival rate of vehicles causes an increase in the average
number of vehicles at the intersection

As many causes and effects as possible should be listed. The semantics are
expressed in a cause-effect graph that is annotated to describe special conditions or
impossible situations. Once the cause-effect graph has been constructed, a decision
table is created by tracing back through the graph to determine combinations of causes
that result in each effect. The decision table then is converted into test cases with
which the model is tested [Myers, 1979; Pressman, 1996; Whitner and Balci, 1989].

V&V Techniques 8/15/01
RPG Reference Document 8

Control Analysis

Control analysis techniques include calling structure analysis, concurrent process
analysis, control flow analysis, and state transition analysis.

Calling structure analysis is used to assess model accuracy by identifying who calls
whom and who is called by whom. The who can be a procedure, subroutine,
function, method, or a submodel within a model.

Static Techniques Example 2:
Inaccuracies caused by message passing (e.g., sending a message to a nonexistent
object) in an object-oriented model can be revealed by analyzing the specific
messages that invoke an action and the actions that messages invoke [Miller et al.,
1995].

Concurrent process analysis is especially useful for parallel [Fujimoto, 1990, 1993;
Page and Nance, 1994] and distributed simulations.

• a simulation executing on a single computer with a single processor (CPU) is
referred to as a serial (sequential) simulation

• a simulation executing on a single computer with multiple processors is a
parallel simulation

• a simulation executed on multiple single-processor computers is said to be a
distributed simulation

Model accuracy is assessed by analyzing the overlap or simultaneous execution of
actions executed in parallel or across distributed simulations. Such analysis can reveal
synchronization and time management problems [Rattray, 1990].

Control flow analysis examines sequences of control transfers and is useful for
identifying incorrect or inefficient constructs within model representation. A graph of the
model is constructed in which conditional branches and model junctions are
represented by nodes and model segments between such nodes are represented by
links [Beizer, 1990]. A node of the model graph usually represents a logical junction
where the flow of control changes, whereas an edge represents the junction that
assumes control.

State transition analysis identifies the finite number of states through which the model
execution passes. A state transition diagram is used to show how the model transitions
from one state to another. Model accuracy is assessed by analyzing the conditions
under which a state change occurs. This technique is especially effective for models
and simulations created under activity scanning, three-phase, and process interaction
conceptual frameworks [Balci, 1988].

V&V Techniques 8/15/01
RPG Reference Document 9

Data Analysis

Data analysis techniques are used in V&V activities to ensure that

• proper operations are applied to data objects (e.g., data structures, event lists,
linked lists)

• data used by the model are properly defined
• defined data are properly used [Perry, 1995]

Two basic data analysis techniques are data dependency analysis and data flow
analysis.

Data dependency analysis determines which variables depend on other variables
[Dunn, 1984]. For parallel and distributed simulations, the data dependency knowledge
is critical for assessing the accuracy of synchronization across multiple processors.

Data flow analysis assesses model accuracy with respect to the use of model
variables. This assessment is classified according to the definition, referencing, and
unreferencing of variables [Adrion et al., 1982], i.e., when variable space is allocated,
accessed, and deallocated. A data flowgraph is constructed to aid in the data flow
analysis. The nodes of the graph represent statements and corresponding variables.
The edges represent control flow.

Data flow analysis can be used to detect undefined or unreferenced variables (much as
in static analysis) and, when aided by model instrumentation, can track minimum and
maximum variable values, data dependencies, and data transformations during model
execution. It is also useful in detecting inconsistencies in data structure declaration and
improper linkages among submodels or federates [Allen and Cocke, 1976; Whitner and
Balci, 1989].

Fault/Failure Analysis

Fault (i.e., incorrect model component) and failure (i.e., incorrect behavior of a model
component) analysis uses model input-output transformation descriptions to identify
how the model logically might fail. The model design specification is examined to
determine if any failures logically could occur, in what context, and under what
conditions. Such examinations often lead to identification of model defects [Miller et al.,
1995].

Interface Analysis

Interface analysis techniques are especially useful for verification and validation of
interactive and distributed simulations. Two basic techniques are model interface
analysis and user interface analysis.

V&V Techniques 8/15/01
RPG Reference Document 10

• Model interface analysis examines submodel-to-submodel interfaces within a
model, or federate-to-federate interfaces within a federation, and determines if
the interface structure and behavior are sufficiently accurate.

• User interface analysis examines the user-model interface and determines if it
is human engineered to prevent errors during the user’s interactions with the
model. It also assesses how accurately this interface is integrated into the
overall model or simulation.

Semantic Analysis

Semantic analysis is conducted by the simulation programming language compiler and
determines the modeler's intent as reflected by the code. The compiler describes the
content of the source code so the modeler can verify that the original intent is reflected
accurately.

The compiler generates a wealth of information to help the modeler determine if the
true intent is translated accurately into the executable code, such as

• symbol tables, which describe the elements or symbols that are manipulated in
the model, function declarations, type and variable declarations, scoping
relationships, interfaces, and dependencies

• cross-reference tables, which describe called versus calling routines (where
each data element is declared, referenced, and altered), duplicate data
declarations (how often and where occurring), and unreferenced source code

• subroutine interface tables, which describe the actual interfaces of the caller
and the called

• maps, which relate the generated runtime code to the original source code
• pretty printers or source code formatters, which reformat the source listing

on the basis of its syntax and semantics, clean pagination, highlighting of data
elements, and marking of nested control structures [Whitner and Balci, 1989]

Structural Analysis

Structural analysis is used to examine the model structure and determine if it adheres
to structure principles. It is conducted by constructing a control flowgraph of the model
structure and examining the graph for anomalies, such as multiple entry and exit points,
excessive levels of nesting within a structure, and questionable practices such as the
use of unconditional branches (e.g., GOTOs).

Yucesan and Jacobson (1992, 1996) apply the theory of computational complexity and
show that the problem of verifying structural properties of M&S applications is difficult to
solve. They illustrate that modeling issues such as accessibility of states, ordering of
events, ambiguity of model specifications, and execution stalling are problems for which
general design techniques do not produce efficient solutions.

V&V Techniques 8/15/01
RPG Reference Document 11

Symbolic Evaluation

Symbolic evaluation assesses model accuracy by exercising the model using symbolic
values rather than actual data values for input. It is performed by feeding symbolic
inputs into a component or federate and producing expressions for the output that are
derived from the transformation of the symbolic data along model execution paths.

Static Techniques Example 3:
function jobArrivalTime(arrivalRate,currentClock,randomNumber)

lag = -10
Y = lag * currentClock
Z = 3 * Y

 if Z < 0 then
arrivalTime = currentClock – log(randomNumber) / arrivalRate

 else
arrivalTime = Z – log(randomNumber) / arrivalRate

 end if
 return arrivalTime
end jobArrivalTime

In symbolic execution, lag is substituted in Y resulting in Y = (–10*currentClock).
Substituting again, Z is found to be equal to (–30*currentClock). Since currentClock
is always zero or positive, an error is detected in that Z will never be greater than
zero, and the “if-then-else” statement is unnecessary.

When unresolved conditional branches are encountered, a path is chosen to traverse.
Once a path is selected, execution continues down the new path. At some point, the
execution evaluation will return to the branch point and the previously unselected
branch will be traversed. All paths eventually are taken.

The result of the execution can be represented graphically as a symbolic execution tree
[Adrion et al., 1982; King, 1976]. The branches of the tree correspond to the paths of
the model. Each node of the tree represents a decision point in the model and is
labeled with the symbolic values of data at that juncture. The leaves of the tree are
complete paths through the model and depict the symbolic output produced.

Symbolic evaluation assists in showing path correctness for all computations regardless
of test data and is also a great source of documentation, but it has the following
disadvantages [Dillon, 1990; King, 1976; Ramamoorthy et al., 1976]:

• the execution tree can explode in size and become too complex as the model
grows

• loops cause difficulties although inductive reasoning and constraint analysis
may help

• loops make thorough execution impossible because all paths must be traversed
• complex data structures may have to be excluded because of difficulties in

symbolically representing particular data elements within the structure

V&V Techniques 8/15/01
RPG Reference Document 12

Syntax Analysis

Syntax analysis is done by the simulation programming language compiler to ensure
that the mechanics of the language are applied correctly [Beizer, 1990].

Traceability Assessment

Traceability assessment is used to match the individual elements of one form of the
model to another. For example, the elements of the system as described in the
requirements specification are matched one to one to the elements of the simulation
design specification. Unmatched elements may reveal either unfulfilled requirements or
unintended design functions [Miller et al., 1995].

Dynamic V&V Techniques

Dynamic V&V techniques evaluate the model based on its execution behavior and as
such require model execution. Most dynamic V&V techniques require model
instrumentation, the insertion of additional code (probes or stubs) into the executable
model to collect information about model behavior during execution. Probe locations
are determined manually or automatically based on static analysis of the model’s
structure. Automated instrumentation is accomplished by a preprocessor that analyzes
the model’s static structure (usually via graph-based analysis) and inserts probes at
appropriate places.

Dynamic V&V techniques usually are applied in three steps:

1) executable model is instrumented
2) instrumented model is executed
3) model output is analyzed and dynamic model behavior is evaluated

Dynamic Techniques Example 1:

Consider a worldwide air traffic control and satellite communication object-oriented
visual M&S application created by using the Visual Simulation Environment [Balci et
al., 1995]. In step 1, the model is instrumented to record the following information
every time an aircraft enters into the coverage area of a satellite:

• aircraft tail number
• time
• aircraft’s longitude, latitude, and altitude
• satellite’s position and identification number

In Step 2, the model is executed and the information collected is written to an output
file. In Step 3, the output file is examined to reveal discrepancies and inaccuracies
in model representation.

V&V Techniques 8/15/01
RPG Reference Document 13

Acceptance Testing

Acceptance testing is conducted by either the M&S User and the V&V Agent or the
Developer’s quality control group in the presence of the User’s representatives. The
model is operationally tested with the actual hardware and data to determine whether
all requirements specified in the legal contract are satisfied [Perry, 1995; Schach,
1996].

Alpha Testing

Alpha testing is the operational testing of the initial version of the complete model by
the developer at an in-house site uninvolved with the model development [Beizer,
1990].

Assertion Checking

An assertion is a statement that should hold true as the simulation executes. Assertion
checking is a verification technique that checks what is happening against what the
modeler assumes is happening to guard against potential errors. The assertions are
placed in various parts of the model to monitor execution. They can be inserted to hold
true globally, for the whole model; regionally, for some submodels; locally, within a
submodel; or at entry and exit of a submodel.

Visual Simulation of Global Air Traffic Control and Satellite Communication
(reprint from Balci, et al., 1995)

V&V Techniques 8/15/01
RPG Reference Document 14

Dynamic Techniques Example 2:

Consider the following pseudo-code [Whitner and Balci, 1989]:

Base := Hours * PayRate

Gross := Base * (1 + BonusRate)

In just these two simple statements, several assumptions are being made. It is
assumed that Hours, PayRate, Base, BonusRate, and Gross are all non-negative.
The following asserted code can be used to prevent execution errors caused by
incorrect values entered by the user:

Assert Local (Hours > 0 and PayRate > 0 and BonusRate > 0)

Base := Hours * PayRate

Gross := Base * (1 + BonusRate)

Assertion checking also prevents structural model inaccuracies. For example, the
model discussed in dynamic techniques example1 can contain assertions such as

• a satellite communicates with the correct ground station
• an aircraft’s tail number matches its type
• an aircraft’s flight path is consistent with the official airline guide

Clearly, assertion checking serves two important needs:

• it verifies that the model is functioning within its acceptable domain
• assertion statement documents the intentions of the modeler

Assertion checking, however, degrades model performance, forcing the modeler to
choose between execution efficiency and accuracy. If the execution performance is
critical, the assertions should be turned off but kept permanently in code to provide both
documentation and means for maintenance testing [Adrion et al., 1982].

Beta Testing

Beta testing refers to the developer’s operational testing of the first-release version of
the complete model at a beta user site under realistic field conditions [Miller et al.,
1995].

Bottom-Up Testing

Bottom-up testing is used with bottom-up model development. Many well-structured
models consist of a hierarchy of submodels. In bottom-up development, model
construction starts with the simulation’s routines at the base level, i.e., the ones that
cannot be decomposed further, and culminates with the submodels at the highest level.
As each routine is completed, it is tested thoroughly. When routines with the same

V&V Techniques 8/15/01
RPG Reference Document 15

parent, or submodel, have been developed and tested, the routines are integrated and
their integration is tested. This process is repeated until all submodels and the model
as a whole have been integrated and tested. The integration of completed submodels
need not wait for all submodels at the same level to be completed. Submodel
integration and testing can be, and often is, performed incrementally [Sommerville,
1996].

Some of the advantages of bottom-up testing include

• it encourages extensive testing at the routine and submodel levels
• the smaller the submodels and the more cohesion within the model, the easier

and more complete its testing will be
• it is particularly attractive for testing distributed models and simulations.

A major disadvantage of bottom-up testing involves the need for test harnesses or
drivers to simulate calling each submodel and to pass the test data needed to execute
each submodel. Developing harnesses for every submodel can be quite complex and
difficult and the harnesses themselves may contain errors. In addition, bottom-up
testing faces the same cost and complexity problems as top-down testing.

Comparison Testing

Comparison testing (also known as back-to-back testing) may be used when more than
one version of a model or simulation is available for testing [Pressman, 1996;
Sommerville, 1996]. For example, different simulations may have been developed by
the different Services to simulate the same military combat aircraft. All simulations built
to represent exactly the same system are run with the same input data and the model
outputs are compared. Differences in the outputs reveal problems with model
accuracy. The major disadvantage to this technique is the lack of information that
generally exists about the validity of the other models. In addition, if two models were
written with the same specific, unnoticed error, the results might agree but would still be
invalid.

Compliance Testing

Compliance testing compares the simulation to required security and performance
standards. These techniques are particularly useful for testing federations of distributed
and interactive models and simulations. A number of different tests are involved:

• Authorization testing tests how accurately different levels of security access
authorization are implemented in the simulation and how properly they comply
with established rules and regulations. The test can be conducted by
attempting to execute a classified model within a federation or by using
classified input data to run a simulation without proper authorization [Perry,
1995].

V&V Techniques 8/15/01
RPG Reference Document 16

• Performance testing simply tests whether all performance characteristics are
measured and evaluated with sufficient accuracy and if all established
performance requirements are satisfied [Perry, 1995].

• Security testing tests whether all security procedures are implemented
correctly and properly. Security testing evaluates the adequacy of protective
procedures and countermeasures by such methods as attempting to penetrate
the simulation while it is running and attempting to break into protected
components (e.g., secure databases) [Perry, 1995].

• Standards testing substantiates that the simulation or federation is developed
with respect to the required standards, procedures, and guidelines.

Debugging

Debugging is a four-step iterative process used to uncover and correct errors and
misconceptions that cause a model’s failure.

• model is tested, revealing the existence of errors (bugs)
• cause of each detected error is determined
• model changes necessary to correct the detected errors are identified
• necessary model changes are made

The model should be retested immediately after changes are made to ensure
successful modification, because a change correcting an error may create another one.
This iterative process continues until no errors are identified after testing [Dunn, 1987].

Execution Testing

Execution testing includes monitoring, profiling, and tracing techniques. These
techniques collect and analyze execution behavior data to reveal model representation
errors.

• Execution monitoring reveals errors by examining low-level information about
activities and events that take place during model execution. It requires the
instrumentation of a model or simulation to gather data to provide activity- or
event-oriented information about the model’s dynamic behavior.

• Execution profiling reveals errors by examining high-level information (profiles)
about activities and events that take place during model execution. It requires
the instrumentation of an executable model to gather data to present profiles
about the model’s dynamic behavior.

• Execution tracing reveals errors by reviewing the line-by-line execution of a
simulation. It requires the instrumentation of an executable model to trace the
model’s line-by-line dynamic behavior. The major disadvantage of the tracing
technique is that execution of the instrumented model may produce a large
volume of trace data too complex to analyze. To overcome this problem, the

V&V Techniques 8/15/01
RPG Reference Document 17

trace data can be stored in a database and the modeler can analyze it using a
query language [Fairley, 1975, 1976].

Dynamic Techniques Example 3:

The model in dynamic techniques example 1 can be instrumented

• to monitor the arrivals and departures of aircraft within a particular city, and the
results can be compared with the official airline guide to judge model validity.
The model also can be instrumented to provide other low-level information such
as the number of late arrivals, the average passenger waiting time at the airport,
and the average flight time between two locations.

• to produce histograms of aircraft departure times, arrival times, and passenger
checkout times at an airport.

• to record all aircraft arrival times at a particular airport. Then the trace data can
be compared with the official airline guide to assess model validity.

Fault/Failure Insertion Testing

This technique inserts a fault (incorrect model component) or a failure (incorrect
behavior of a model component) into the model and observes whether the model
produces the invalid behavior as expected. Unexplained behavior may reveal errors in
model representation.

Field Testing

Field testing places the model in an operational situation and collects as much
information as possible for validation. Field testing conducted as part of the test and
evaluation (T&E) process is particularly important in DoD system acquisition. Although
it is usually difficult, expensive, and sometimes impossible to devise meaningful field
tests for complex systems, their use wherever possible helps both the project team and
decision makers develop confidence in the model [Shannon, 1975; Van Horn, 1971].
The greatest disadvantage of field testing is the lack of adequate test resources to
produce statistically significant results. Often, simulation runs augment live test data in
the development and decision processes.

Functional Testing

Functional testing (also called black-box testing) assesses the accuracy of model
input-output transformation. It is applied by inputting test data to the model and
evaluating the accuracy of the corresponding outputs. It is virtually impossible to test all
input-output transformation paths for a reasonably large and complex simulation
because the paths could number in the millions. Therefore, the objective of functional
testing is to increase confidence in model input-output transformation accuracy as
much as possible rather than to claim absolute correctness.

V&V Techniques 8/15/01
RPG Reference Document 18

Generating test data is a crucially important but very difficult task. The law of large
numbers does not apply. Successfully testing the model under 1,000 input values (i.e.,
test data) does not imply high confidence in model input-output transformation accuracy
just because the number appears large. Instead, the number of input values used
should be compared with the number of allowable input values to determine the
percentage of the model input domain that is covered in testing. The more the model
input domain is covered in testing, the more confidence is gained in the accuracy of the
model input-output transformation [Howden, 1980; Myers, 1979].

Graphical Comparison

Graphical comparison is a subjective and heuristic but practical approach for examining
the representational quality of variables. The graphs of values of model variables over
time are compared with the graphs of values of system variables to investigate
characteristics such as similarities in periodicity, skew, number, and location of
inflection points; logarithmic rise and linearity; phase shift; trend lines; and exponential
growth constants [Cohen and Cyert, 1961; Forrester, 1961; Miller, 1975; Wright, 1972].

Interface Testing

Interface testing (also known as integration testing) tests the data, model, and user
interfaces. Interface testing is more rigorous than the interface analysis.

Data Interface Testing -- This form of testing is used to assess the accuracy of data
entered into the model or derived from the model during execution. All data interfaces
are examined to substantiate that all aspects of data input and output are correct. This
form of testing is particularly important for those simulations in which the inputs are
read from a database or the results are stored in a database for later analysis. The
model’s interface to the database is examined to ensure correct importing and
exporting of data [Miller et al., 1995]. Data interface testing is key to the relationship
between the VV&A effort and the corresponding data V&V effort.

Model Interface Testing --This form of testing is used to detect model representation
errors created as a result of component-to-component or federate-to-federate interface
errors or invalid assumptions about the interfaces. It is essential that each submodel
within a model or model (federate) within a federation is tested individually and found to
be sufficiently accurate before model interface testing begins.

This procedure focuses on how well the submodels (or federates) are integrated with
each other and is particularly useful for object-oriented and distributed simulations.

Object-Oriented Object Paradigm

• created with public and private interfaces
• interface with other objects through message passing
• reused with their interfaces
• inherit the interfaces and services of other objects.

V&V Techniques 8/15/01
RPG Reference Document 19

Model interface testing assesses the accuracy of four types of interfaces, as identified
by Sommerville (1996):

• Parameter interfaces that pass data or function references from one object to
another

• Shared memory interfaces that enable objects to share a block of memory in
which data are placed by one object and from which they are retrieved by other
objects

• Procedural interfaces that implement the concept of encapsulation under the
object-oriented paradigm—an object provides a set of services (procedures) that
can be used by other objects and hides (encapsulates) the way a service is
provided from the outside world

• Message-passing interfaces that enable an object to request the service of
another object through message passing

Sommerville (1996) classifies interface errors into three categories:

• Interface misuse occurs when an object calls another and incorrectly uses its
interface. For objects with parameter interfaces, a parameter may be of the
wrong type or may be passed in the wrong order, or the wrong number of
parameters may be passed.

• Interface misunderstanding occurs when object A calls object B without
satisfying the underlying assumptions of object B’s interface.

Dynamic Techniques Example 4:

Object A calls a binary search routine by passing an unordered list to be
searched, when in fact the binary algorithm assumes that the list is already
sorted.

• Timing errors occur in real-time, parallel, and distributed simulations that use a

shared memory or a message-passing interface.

User Interface Testing -- This form of testing is used to assess the interactions
between the User and the simulation and to detect model representation errors created
as a result of user-model interface errors or invalid assumptions about the user
interface. It is particularly important for testing human-in-the-loop and interactive
simulations. The user interface is examined from low-level ergonomic aspects to
instrumentation and controls and from human factors to global considerations of
usability and appropriateness to identify potential errors [Miller et al., 1995; Pressman,
1996; Schach, 1996].

V&V Techniques 8/15/01
RPG Reference Document 20

Object-Flow Testing

Object-flow testing is similar to transaction-flow testing [Beizer, 1990] and thread
testing [Sommerville, 1996]. It is used to assess model accuracy by exploring the life
cycle of an object during model execution. Every time the dynamic object enters into a
subroutine, the visualization of that subroutine is displayed. Every time the dynamic
object interacts with another object within the subroutine, the interaction is highlighted.
Examination of the way a dynamic object flows through the activities and processes and
interacts with its environment during its lifetime in model execution is extremely useful
for identifying errors in model behavior.

Dynamic Techniques Example 5:

A dynamic object (aircraft) can be marked for testing in the visual simulation
environment for the model shown in dynamic techniques example 1.

Partition Testing

Partition testing examines the model with the test data generated by analyzing the
model’s functional representations or partitions. It is accomplished by

• decomposing both the model specification and its implementation into functional
representations (partitions)

• comparing the elements and prescribed functionality of each partition
specification with the elements and actual functionality of the corresponding
partition as it has been implemented in code

• deriving test data to test the functional behavior of each partition extensively
• testing the model with the generated test data

The model is decomposed or partitioned into functional representations (i.e., the model
computations) through the use of symbolic evaluation techniques that maintain
algebraic expressions of model elements and show model execution paths. Two
computations are equivalent if they are defined for the same subset of the input domain
that causes a set of model paths to be executed and if the result of the computations is
the same for each element within the subset of the input domain [Howden, 1976].
Standard proof techniques show equivalence over a domain. When equivalence
cannot be shown, partition testing is performed to locate errors or, as Richardson and
Clarke (1985, p. 1488) state, to “increase confidence in the equality of the computations
due to the lack of error manifestation.” By involving both the model’s specification and
implementation, partition testing can provide more comprehensive test data coverage
than other test data generation techniques.

Predictive Validation

V&V Techniques 8/15/01
RPG Reference Document 21

Predictive validation is used to test the predictive ability of a model [Emshoff and
Sisson, 1970]. It requires past input and output data from the system being modeled.
The model is driven by past system input data and its outputs are compared with the
corresponding past system output data. Predictive validation is often employed in Test
and Evaluation (T&E) testing. It is also used in the Model-Test-Model development
methodology, which uses the test data to make subsequent improvements to the
model.

Product Testing

Successful testing of each component or federate does not guarantee overall
simulation or federation credibility. Product testing, as well as interface testing, can be
performed to substantiate overall model credibility. Product testing is conducted by the
Developer after all components have been successfully integrated (as demonstrated by
the interface testing) and before the acceptance testing is performed by the User.
Because no one wants the product (model) to fail the acceptance test, product testing
should be conducted to ensure that all requirements specified in the legal contract are
satisfied before the model is turned over to the User [Schach, 1996].

Regression Testing

Regression testing is used to investigate the relationships between variables and to
ensure that corrections and modifications to the model do not create other errors or
adverse side effects. Because the modified model is usually retested with the test data
sets used previously, successful regression testing requires the retention and
management of old test data sets throughout the model development life cycle.

Sensitivity Analysis

Sensitivity analysis is performed by systematically changing the values of model input
variables and parameters over some range of interest and observing the effect upon
model behavior [Shannon, 1975]. Unexpected effects may reveal invalidity. The input
values also can be changed to induce errors to determine the sensitivity of model
behavior to such errors. Sensitivity analysis can identify those input variables and
parameters to which model behavior is very sensitive. Model validity then can be
enhanced by ensuring that those values are specified with sufficient accuracy
[Hermann, 1967; Miller, 1974a,b; Van Horn, 1971].

Special Input Testing

Special input testing assesses model accuracy by subjecting the model to a variety of
inputs. There are eight types of tests: boundary value, equivalence partitioning,
extreme input, invalid input, real-time input, self-driven input, stress, and trace-driven
input techniques.

V&V Techniques 8/15/01
RPG Reference Document 22

• Boundary value testing is used to examine the model’s accuracy by using test
cases on the boundaries of input equivalence classes. A model's input domain
usually can be divided into classes of input data (known as equivalence classes)
that cause the model to function the same way.

Dynamic Techniques Example 6:

A traffic intersection model might specify the probability of left turn in a three-way
turning lane as 0.2, the probability of right turn as 0.35, and the probability of
traveling straight as 0.45. This probabilistic branching can be implemented by using
a uniform random-number generator that produces numbers in the range 0 ≤ rn ≤ 1.
Thus, three equivalence classes are identified:

0 ≤ rn ≤ 0.2

0.2 < rn ≤ 0.55

0.55 < rn ≤ 1.

Each test case from within a given equivalence class has the same effect on the
model behavior, i.e., produces the same direction of turn.

Because in boundary analysis, test cases are generated just within, on top of, and
outside of the equivalence classes [Myers, 1979], for left turn, the following test
cases should be selected: 0.0, ±0.000001, 0.199999, 0.2, and 0.200001.

In addition to generating test data on the basis of input equivalence classes, it
also is useful to generate test data that will cause the model to produce values
on the boundaries of output equivalence classes [Myers, 1979]. The underlying
rationale for this technique as a whole is that the most error-prone test cases lie
along the boundaries [Ould and Unwin, 1986]. Notice that invalid test cases
used in the example will cause the model execution to fail; however, this failure
should be as expected and meaningfully documented.

• Equivalence partitioning testing partitions the model input domain into
equivalence classes in such a manner that a test of a representative value from
a class is assumed to be a test of all values in that class [Miller et al., 1995;
Perry, 1995; Pressman, 1996; Sommerville, 1996].

• Extreme input testing is conducted by running the model or simulation with
only minimum values, maximum values, or an arbitrary mixture of minimum and
maximum values for the model input variables. For example, this technique
allows the model user to test a proposed weapon system against extreme
conditions that may not be obtainable in actual system testing.

• Invalid input testing is performed by running the model or simulation under
incorrect input data to determine whether the model behaves as expected.
Unexplained behavior may reveal errors in model representations.

• Real-time input testing is particularly important for assessing the accuracy of
simulations built to represent embedded real-time systems.

V&V Techniques 8/15/01
RPG Reference Document 23

Dynamic Techniques Example 7:

Different design strategies of a real-time software system built to control the
operations of a manufacturing system can be studied using simulation. The model
that represents the software design can be tested by running it with real-time input
data that can be collected from the existing manufacturing system.

Using real-time input data collected from a real system is particularly important
to capture the timing relationships and correlations between input data points.

• Self-driven input testing is conducted by running the model or simulation
under input data randomly sampled from probabilistic models representing
random phenomena in a real or future system. A probability distribution (e.g.,
exponential, gamma, weibull) can be fit to collected data, or triangular and beta
probability distributions can be used in the absence of data, to model random
input conditions [Banks et al., 1996; Law and Kelton, 1991]. Then, using
random variate generation techniques, random values can be sampled from the
probabilistic models to test the model validity under a set of observed or
speculated random input conditions.

• Stress testing tests the model’s validity under extreme workload conditions.
This is usually accomplished by increasing the congestion in the model.

Dynamics Technique Example 6:

The model in dynamic techniques example 1 can be stress tested by increasing the
number of flights between two locations to an extremely high value. Such an
increase in workload may create unexpected high congestion in the model.

Under stress testing, the model may exhibit invalid behavior; however, such
behavior should be as expected and meaningfully documented [Dunn, 1987;
Myers, 1979].

• Trace-driven input testing is conducted by running the model or simulation
under input trace data collected from a real system. A system can be
instrumented with monitors that collect data by tracing all system events. The
raw trace data can then be refined to produce the real input data for testing the
model or simulation.

Statistical Techniques

Much research has been conducted in applying statistical techniques to model
validation. The table below presents the statistical techniques proposed for model
validation and lists related references.

Statistical Techniques Proposed for Validation
Technique References

V&V Techniques 8/15/01
RPG Reference Document 24

Statistical Techniques Proposed for Validation
Technique References

Analysis of Variance Naylor and Finger, 1967

Confidence Intervals/Regions Balci and Sargent, 1984; Law and Kelton, 1991;
Shannon, 1975

Factor Analysis Cohen and Cyert, 1961

Hotelling’s T2 Tests Balci and Sargent, 1981, 1982a, 1982b, 1983;
Shannon, 1975

Multivariate Analysis of
Variance:

− Standard MANOVA
− Permutation Methods
− Nonparametric Ranking

Methods

Garratt, 1974

Nonparametric Goodness-of-Fit
Tests:
− Kolmogorov-Smirnov Test
− Cramer-Von Mises Test
− Chi-square Test

Gafarian and Walsh, 1969; Naylor and Finger,
1967

Nonparametric Tests of Means
− Mann-Whitney-Wilcoxon

Test
− Analysis of Paired

Observations

Shannon, 1975

Regression Analysis Aigner, 1972; Cohen and Cyert, 1961; Howrey
and Kelejian, 1969

Theil’s Inequality Coefficient Kheir and Holmes, 1978; Rowland and Holmes,
1978; Theil, 1961

Time Series Analyses:
− Spectral Analysis

− Correlation Analysis
− Error Analysis

Fishman and Kiviat, 1967; Gallant et al., 1974;
Howrey and Kelejian, 1969; Hunt, 1970; Van
Horn, 1971; Watts, 1969
Watts, 1969
Damborg and Fuller, 1976; Tytula, 1978

t-Test Shannon, 1975; Teorey, 1975

The statistical techniques listed in the table above require the system being modeled to
be completely observable; i.e., all data required for model validation can be collected
from the system. The model is validated by using the statistical techniques to compare
the model output data with the corresponding system output data after the model is run
with the same input data as the real system. Model and system outputs are compared
using multivariate statistical techniques to capture the correlation among the output
variables. A recommended validation procedure based on the use of simultaneous
confidence intervals is provided in the Appendix A.

V&V Techniques 8/15/01
RPG Reference Document 25

Structural Testing

Structural testing (also called white-box testing) evaluates the model based on its
internal structure (how it is built), whereas functional (black-box) testing assesses the
input-output transformation accuracy of the model. Structural testing employs data flow
and control flow diagrams to assess the accuracy of internal model structure by
examining model elements such as statements, branches, conditions, loops, internal
logic, internal data representations, submodel interfaces, and model execution paths.

Structural (white-box) testing consists of six testing techniques:

• branch testing
• condition testing
• data flow testing
• loop testing
• path testing
• statement testing

Branch Testing runs the model or simulation under test data to execute as many
branch alternatives as possible, as many times as possible, and to substantiate their
accurate operation. The more branches that test successfully, the more confidence is
gained in the model’s accurate execution with respect to its logical branches [Beizer,
1990].

Condition testing runs the model or simulation under test data to execute as many
logical conditions as possible, as many times as possible, and to substantiate their
accurate operation. The more logical conditions that test successfully, the more
confidence is gained in the model’s accurate execution with respect to its logical
conditions.

Date flow testing uses the control flowgraph to explore sequences of events related to
the status of data structures and to examine data-flow anomalies. For example,
sufficient paths can be forced to execute under test data to ensure that every data
element and structure is initialized before use or every declared data structure is used
at least once in an executed path [Beizer, 1990].

Loop testing runs the model or simulation under test data to execute as many loop
structures as possible, as many times as possible, and to substantiate their accurate
operation. The more loop structures that test successfully, the more confidence is
gained in the model’s accurate execution with respect to its loop structures [Pressman,
1996].

Path testing runs the model or simulation under test data to execute as many control
flow paths as possible, as many times as possible, and to substantiate their accurate
operation. The more control flow paths that test successfully, the more confidence is

V&V Techniques 8/15/01
RPG Reference Document 26

gained in the model’s accurate execution with respect to its control flow paths, but 100
percent path coverage is impossible to achieve for a reasonably large M&S application
[Beizer, 1990].

Path testing is performed in three steps [Howden, 1976].

1) The model control structure is determined and represented in a control flow
diagram

2) Test data is generated to cause selected model logical paths to be executed.
Symbolic evaluation can be used to identify and classify input data based on the
symbolic representation of the model. The test data is generated in such a way
as to

− cover all statements in the path

− encounter all nodes in the path

− cover all branches from a node in the path

− achieve all decision combinations at each branch point in the path

− traverse all paths [Prather and Myers, 1987]
3) By using the generated test data, the model is forced to proceed through each

path in its execution structure, thereby providing comprehensive testing.

In practice, only a subset of all possible model paths is selected for testing due to
budgetary constraints. Recent work has sought to increase the amount of coverage per
test case and to improve the effectiveness of the testing by selecting the most critical
areas to test. The path prefix strategy is an adaptive strategy that uses previously
tested paths as a guide in the selection of subsequent test paths. Prather and Myers
(1987) prove that the path prefix strategy achieves total branch coverage.

The identification of essential paths is a strategy that reduces the path coverage
required by nearly 40 percent [Chusho, 1987] by eliminating nonessential paths. Paths
overlapped by other paths are nonessential. The model control flow graph is
transformed into a directed graph whose arcs (called primitive arcs) correspond to the
essential paths of the model. Nonessential arcs are called inheritor arcs because they
inherit information from the primitive arcs. The graph produced during the
transformation is called an inheritor-reduced graph. Chusho (1987) presents
algorithms for efficiently identifying nonessential paths, reducing the control graph into
an inheritor-reduced graph, and applying the concept of essential paths to the selection
of effective test data.

Statement testing runs the model or simulation under test data to execute as many
statements as possible, as many times as possible, and to substantiate their accurate
operation. The more statements that test successfully, the more confidence is gained
in the model’s accurate execution with respect to its statements [Beizer, 1990].

V&V Techniques 8/15/01
RPG Reference Document 27

Submodel / Module Testing

Submodel testing requires a top-down decomposition of the model into submodels.
The executable model is instrumented to collect data on all input and output variables
of a submodel. The system is instrumented (if possible) to collect similar data. Then,
the behavior of each submodel is compared with the corresponding subsystem’s
behavior to judge the submodel’s validity. If a subsystem can be modeled analytically,
its exact solution can be compared against the simulation solution to assess its validity
quantitatively.

Validating each submodel individually does not imply sufficient validity for the whole
model. Each submodel is found sufficiently valid with some allowable error. The
allowable errors can accumulate to make the whole model invalid. Therefore, after
each submodel is validated, the whole model itself must be tested.

Symbolic Debugging

This technique employs a debugging tool that allows the modeler to manipulate model
execution while viewing the model at the source code level. By setting breakpoints, the
modeler can interact with the entire model one step at a time, at predetermined
locations, or under specified conditions. While using a symbolic debugger, the modeler
may altar model data values or replay a portion of the model, i.e., execute it again
under the same conditions. Typically, the modeler utilizes the information gathered with
execution testing techniques to isolate a problem or its proximity. Then the debugger is
employed to determine how and why the error occurs.

Current state-of-the-art debuggers can view the runtime code as it appears in the
source listing, set watch variables to monitor data flow, examine complex data
structures, and even communicate with asynchronous input/output channels. The use
of symbolic debugging can reduce greatly the debugging effort while increasing its
effectiveness. Symbolic debugging allows the modeler to locate errors and check
numerous circumstances that lead to errors [Whitner and Balci, 1989].

Top-Down Testing

Top-down testing is used with top-down model development. In top-down
development, model construction starts with the submodels at the highest level and
culminates with the routines at the base level, i.e., the ones that cannot be decomposed
further. As each submodel is completed, it is tested thoroughly. When submodels with
the same parent have been developed and tested, the submodels are integrated and
their integration is tested. This process is repeated until the whole model has been
integrated and tested. The integration of completed submodels need not wait for all
submodels at the same level to be completed. Submodel integration and testing can
be, and often is, performed incrementally [Sommerville, 1996].

Top-down testing begins with a test of the global model at its highest level. When
testing a given level, calls to submodels at lower levels are simulated using stubs. A

V&V Techniques 8/15/01
RPG Reference Document 28

stub is a dummy submodel that has no function other than to let its caller complete the
call. Fairley (1976) lists the following advantages of top-down testing:

• model integration testing is minimized
• a working model is produced earlier in the development process
• higher level interfaces are tested first
• a natural environment for testing lower levels is created
• errors are localized to new submodels and interfaces

Some of the disadvantages of top-down testing include [Fairley, 1976]:

• thorough submodel testing is discouraged, because the entire model must be
executed to perform testing

• testing can be expensive, because the whole model must be executed for each
test

• adequate input data is difficult to obtain because of the complexity of the data
paths and control predicates

• integration testing is hampered because of the size and complexity of testing the
whole model

Visualization / Animation

Visualization and animation of a simulation greatly assist in model V&V [Sargent, 1992].
Displaying graphical images of internal (e.g., how customers are served by a cashier)
and external (e.g., utilization of the cashier) dynamic behavior of a model during
execution exhibits errors.

Dynamic Techniques Example 8:

In visual simulation of a traffic intersection, the modeler can observe the arrival of
vehicles in different lanes and their movements through the intersection as the traffic
light changes. Visualizing the model as it executes and comparing it with the real traffic
intersection can help identify discrepancies between the model and the system.

Seeing the model in action is very useful for uncovering errors; however, it does not
guarantee model correctness [Paul, 1989]. Therefore, visualization should be used
with caution.

Formal Techniques

Formal V&V techniques are based on formal mathematical proofs of correctness. If
attainable, a formal proof of correctness is the most effective means of model V&V.

V&V Techniques 8/15/01
RPG Reference Document 29

Unfortunately, “if attainable” is the sticking point. Current formal proof of correctness
techniques cannot even be applied to a reasonably complex simulation; however,
formal techniques can serve as the foundation for other V&V techniques. The most
commonly known techniques are briefly described below [Khanna, 1991; Whitner and
Balci, 1989].

Induction, Inference, and Logical Deduction are simply acts of justifying conclusions
on the basis of premises given. An argument is valid if the steps used to progress from
the premises to the conclusion conform to established rules of inference. Inductive
reasoning is based on invariant properties of a set of observations; assertions are
invariants because their value is defined to be true. Given that the initial model
assertion is correct, it stands to reason that if each path progressing from that assertion
is correct and each path subsequently progressing from the previous assertion is
correct, then the model must be correct if it terminates. Birta and Ozmizrak (1996)
present a knowledge-based approach for M&S validation that uses a validation
knowledge base containing rules of inference.

Inductive Assertions assess model correctness based on an approach that is very
close to formal proof of model correctness. It is conducted in three steps.

1) Input-to-output relations for all model variables are identified
2) These relations are converted into assertion statements and are placed along

the model execution paths so that an assertion statement lies at the beginning
and end of each model execution path

3) Verification is achieved by proving for each path that, if the assertion at the
beginning of the path is true and all statements along the path are executed,
then the assertion at the end of the path is true

If all paths plus model termination can be proved, by induction, the model is proved to
be correct [Manna et al., 1973; Reynolds and Yeh, 1976].

Lambda Calculus [Barendregt, 1981] is a system that transforms the model into formal
expressions by rewriting strings. The model itself can be considered a large string.
Lambda calculus specifies rules for rewriting strings to transform the model into lambda
calculus expressions. Using lambda calculus, the modeler can express the model
formally to apply mathematical proof of correctness techniques to it.

Predicate Calculus provides rules for manipulating predicates. A predicate is a
combination of simple relations, such as completed_jobs > steady_state_length. A
predicate will be either true or false. The model can be defined in terms of predicates
and manipulated using the rules of predicate calculus. Predicate calculus forms the
basis of all formal specification languages [Backhouse, 1986].

Predicate Transformation [Dijkstra, 1975; Yeh, 1977] verifies model correctness by
formally defining the semantics of the model with a mapping that transforms model
output states to all possible model input states. This representation is the basis from
which model correctness is proved.

V&V Techniques 8/15/01
RPG Reference Document 30

Formal Proof of Correctness expresses the model in a precise notation and then
mathematically proves that the executed model terminates and satisfies the
requirements with sufficient accuracy [Backhouse, 1986; Schach, 1996]. Attaining
proof of correctness in a realistic sense is not possible under the current state of the art.
The advantage of realizing proof of correctness is so great, however, that, when the
capability is realized, it will revolutionize V&V.

Guidelines for Selecting V&V Techniques

In the overall problem solving process diagram shown below, the V&V Process is
depicted as a subprocess of the M&S Use Process that interacts with both the M&S
Development/Preparation Process and the Accreditation Process. (See the
diagrams for VV&A and the New Development Process, VV&A and Legacy M&S
Preparation, and VV&A and Federation Construction for a more detailed view of these
interactions.)

Any V&V process involves a series of activities and tasks that are selected to address
the particular needs of the application and to map to the phases and activities of the
particular development or preparation process involved. . What tasks are selected and
what techniques are chosen to accomplish them depend upon a number of factors,
such as

Non-M&S Methods

PROBLEM SOLVING PROCESS
Establish

Objectives
Define

Problem

M&S USE
PROCESS

Execute
and

Prepare
Results

yes

Develop
V&V Plan
Develop

V&V Plan

Verify
Rqmts
Verify
Rqmts

Select
Approaches

Select
Approaches

noMake
Accreditation

Decision

Apply
Results
Apply

Results

Repository

Perform
Accreditation
Assessment

Perform
Accreditation
Assessment

Prepare
M&S for

Use

Prepare
M&S for

Use

Develop
Accreditation

Plan

Develop
Accreditation

Plan

ACCREDITATION PROCESS

Accept &
Record
Solution

Analyze
Results

Define
M&S

Rqmts

Plan
Approach

M&S
Method

Collect and Evaluate Accreditation InformationCollect and Evaluate Accreditation Information

Perform V&V Activities Appropriate for M&S CategoryPerform V&V Activities Appropriate for M&S CategoryPerform V&V Activities Appropriate for M&S Category

The Overall Problem Solving Process
5/15/01

Construct Federation

Refine M&S
Rqmts

Refine M&S
Rqmts

Dev Fed
Conceptual

Model

Dev Fed
Conceptual

Model
Develop

Federation
Develop

Federation
Integrate &
Test Fed

Integrate &
Test Fed

Design
Federation
Design

Federation

Develop New M&S

Refine M&S
Rqmts

Refine M&S
Rqmts

Plan M&S
Development
Plan M&S

Development
Develop

Conceptual
Model

Develop
Conceptual

Model
Implement

& Test
Implement

& Test
Develop
Design

Develop
Design

Prepare Legacy M&S
Identify Critical

M&S Deficiencies
& Plan

Modifications

Identify Critical
M&S Deficiencies

& Plan
Modifications

Revise
Conceptual

Model

Revise
Conceptual

ModelRefine
M&S

Rqmts

Refine
M&S

Rqmts

Impl Mods
& Conduct

Tests

Impl Mods
& Conduct

Tests
Evaluate &

Modify
Design

Evaluate &
Modify
Design

M&S DEVELOPMENT/ PREPARATION PROCESS

Test As-Is M&STest As-Is M&S

V&V PROCESS

V&V Techniques 8/15/01
RPG Reference Document 31

• type of simulation (legacy, new M&S, federation)
• problem to be solved
• objectives and requirements and their acceptability criteria
• risks and priorities of the User
• constraints (time, money, personnel, equipment)

See the core documents for V&V Agent Role in the VV&A of New Simulations, V&V
Agent Role in the VV&A of Legacy Simulations, V&V Agent Role in the VV&A of
Federations for additional information about specific V&V activities and tasks.

In the table below, the specific informal, static, dynamic, and formal V&V techniques,
listed in the V&V technique taxonomy table and discussed in the first part of this
document are mapped to the basic phases of simulation development and use (i.e.,
requirements definition, conceptual model development, design, implementation, use,
and assessment). Brief synopses of the techniques are provided by hot link. Additional
columns also indicate whether a technique is used primarily to support verification,
validation, or both.. Selecting the best technique to apply to a given V&V task in a
given situation is not always straightforward (see the example at Appendix B). The
reference document on V&V Tools provides a discussion of the types of tools that can
be used to perform various V&V techniques.

Common V&V Technique Applications
M&S Phase V&V Category

Class V&V Technique

M
&

S
R

qm
ts

C
on

ce
pt

ua
l

M
od

el

M
&

S
D

es
ig

n

M
&

S
D

ev
el

op
m

en
t

M
&

S
U

se

M
&

S
A

ss
es

sm
en

t

Ve
rif

ic
at

io
n

Va
lid

at
io

n
Dyn Acceptance test 1 X X X X

Dyn Alpha test 2 X X X X

Dyn Assertion check 3 X X

Inf Audit 4 X X X X X X

Dyn Authorization test 5 X X X X

Dyn Beta test 6 X X X X

Dyn Bottom-up test 7 X X

Dyn Boundary value test 8 X X X

Dyn Branch test 9 X X

Stat Calling structure
analysis10 X X X X

Stat Cause-effect
graphing11 X X X X X X

Dyn Comparison test12 X X X X X X

V&V Techniques 8/15/01
RPG Reference Document 32

Common V&V Technique Applications
M&S Phase V&V Category

Class V&V Technique

M
&

S
R

qm
ts

C
on

ce
pt

ua
l

M
od

el

M
&

S
D

es
ig

n

M
&

S
D

ev
el

op
m

en
t

M
&

S
U

se

M
&

S
A

ss
es

sm
en

t

Ve
rif

ic
at

io
n

Va
lid

at
io

n

Stat Concurrent process
analysis13 X X X

Dyn Condition test14 X X

Stat Control flow analysis15 X X X X

Stat Data dependency
analysis16 X X X X

Stat Data flow analysis17 X X X X

Dyn Data flow test18 X X

Dyn Data interface test19 X X X

Dyn Debugging20 X X X

Inf Desk check21 X X X X X

Inf Documentation check X X X X

Dyn Equivalence
partitioning test22 X X X

Dyn Execution monitoring23 X X X X

Dyn Execution profiling24 X X X X

Dyn Execution trace25 X X X X

Dyn Extreme input test26 X X X

Inf Face validation27 X X X X X X X

Stat Fault/Failure
analysis28 X X X

Dyn Fault/Failure insertion
test29 X X X X

Dyn Field test30 X X

Dyn Functional test31 X X X X

Dyn Graphical
comparison32 X X X X

For Induction X X

For Inductive assertions X X X

For Inference X X X

Inf Inspection33 X X X X X X X X

Dyn Invalid input test34 X X X X

For Lambda calculus X X

For Logical deduction X X

Dyn Loop test35 X X

V&V Techniques 8/15/01
RPG Reference Document 33

Common V&V Technique Applications
M&S Phase V&V Category

Class V&V Technique

M
&

S
R

qm
ts

C
on

ce
pt

ua
l

M
od

el

M
&

S
D

es
ig

n

M
&

S
D

ev
el

op
m

en
t

M
&

S
U

se

M
&

S
A

ss
es

sm
en

t

Ve
rif

ic
at

io
n

Va
lid

at
io

n

Stat Model interface
analysis36 X X X X X

Dyn Model interface test37 X X X X

Dyn Object-flow test38 X X X X

Dyn Partition test39 X X X X

Dyn Path test40 X X X

Dyn Performance test41 X X X

For Predicate calculus X X

For Predicate
transformation X X

Dyn Predictive validation42 X X X X

Dyn Product test43 X X X X

For Proof of Correctness X X

Dyn Real-time input test44 X X X X

Dyn Regression test45 X X X

Inf Review46 X X X X X X X X

Dyn Security test47 X X X

Dyn Self-driven input test48 X X X X

Stat Semantic analysis49 X X X

Dyn Sensitivity analysis50 X X X X X

Dyn Standards test51 X X X

Stat State transition
analysis52 X X X X

Dyn Statement test53 X X X X

Dyn Statistical
techniques54 X X X X

Dyn Stress test55 X X X X

Stat Structural analysis56 X X X

Dyn Submodel/Module
test57 X X

Dyn Symbolic debugging58 X X

Stat Symbolic evaluations59 X X

Stat Syntax analysis60 X X

Dyn Top-down test61 X X

Stat Traceability
assessment62 X X X X X X

V&V Techniques 8/15/01
RPG Reference Document 34

Common V&V Technique Applications
M&S Phase V&V Category

Class V&V Technique

M
&

S
R

qm
ts

C
on

ce
pt

ua
l

M
od

el

M
&

S
D

es
ig

n

M
&

S
D

ev
el

op
m

en
t

M
&

S
U

se

M
&

S
A

ss
es

sm
en

t

Ve
rif

ic
at

io
n

Va
lid

at
io

n

Dyn Trace-driven input
test63 X X X X

Inf Turing test64 X X X X

Stat User interface
analysis65 X X X X X X

Dyn User interface test66 X X X

Dyn Visualization/
Animation67 X X X X X

Inf Walkthroughs68 X X X X X X X X

Conducting an effective V&V effort is extremely important for the successful completion
of complex and large-scale simulation applications and for resolution of complex
problems. How much to test or when to stop testing depends on the requirements of
the application or problem involved. The V&V effort should continue until the User
obtains sufficient confidence in the credibility and acceptability of the simulation results.

1 Operationally test the model with actual hardware and data to determine if specified requirements are
met.
2 Operational testing of initial, complete version of the model at an in-house site uninvolved with the model
development.
3 Verification technique – an assertion is a statement that should hold true as the simulation executes and
is placed in various parts of the model.
4 Assess the application of M&S with respect to established policies, standards.
5 Test the implementation in a simulation of security access authorization.
6 Developer’s operational testing of first release version of complete model at a beta user site.
7 Thoroughly test simulation’s routines starting from the base level to the highest level.
8 Examine accuracy by using test cases on the boundaries of input data classes.
9 Use test data to execute as many branch alternatives as possible.
10 Assess model accuracy by identifying who calls whom, who is called by whom.
11 Identify cause/effects of modeled system, create decision table and convert into test cases with which
the model is tested.
12 Compare results from models of the same system.
13 Assess model accuracy by investigating possible synchronization and time management problems in
parallel or distributed simulations.
14 Run under test data to execute as many logical conditions as possible.
15 Graph the model to examine sequences of control transfer to identify incorrect or inefficient constructs
within the model representation.
16 Determines which variables depend on other variables. Critical for assessing synchronization accuracy
across multiple processors.
17 Assess use of model variables with respect to when variable space is allocated, accessed, and
deallocated.
18 Explore sequences of events related to the status of data structures and examine data flow anomalies.
19 Ensure that data entering the model and derived from the model are accurately read or stored.

V&V Techniques 8/15/01
RPG Reference Document 35

20 Iterative process to uncover and correct errors or misconceptions.
21 Process of intensely examining work to ensure correctness, completeness, clarity.
22 Test the accuracy of the model with a representative value from each input data class.
23 Gather and examine activity- and event-oriented (low-level) information resulting from model execution.
24 Examine high-level information (profiles) about activities and events during model execution.
25 Reveals errors by reviewing line-by-line execution of a simulation.
26 Assess model at minimum or maximum values for the model inputs.
27 Subjective comparison of model and system behaviors; preliminary approach to validation in the early
stages of development.
28 Examine model design specification to determine if any failures logically could occur, and under what
conditions.
29 Insert a fault or failure and observe if the model produces the expected invalid behavior.
30 Places the model in an operation situation to collect information for validation.
31 Assesses the accuracy of model input-output transformation.
32 Compare graphs of model variables over time to system variables.
33 Formalized five-step process, checklist approach for uncovering errors.
34 Examine model performance using incorrect input data.
35 Run model to execute as many loop structures as possible.
36 Determines if interface structure and behavior are accurate.
37 Assess how well submodels are integrated with each other.
38 Examine the way a dynamic object flows through activities/processes during its lifetime in model
execution.
39 Analyze the model’s functional partitions by comparing partitions of the model specification and
implementation and testing model with test data.
40 Run model to execute as many control flow paths as possible.
41 Test whether all performance characteristics are measured and evaluated with sufficient accuracy.
42 Use past input data, then compare model outputs with past output data.
43 Preparation for acceptance testing.
44 For simulations representing embedded real-time systems, assess model accuracy using real-time
input data.
45 Investigates variable relationships, ensures that modifications do not create other errors.
46 Evaluation relative to specifications and standards by management level team.
47 Assess model using input data sampled from probabilistic models representing random input conditions
for a real system.
48 Assess model using input data sampled from probabilistic models representing random input conditions
for a real system.
49 The content of the source code as described by the compiler is examined by the modeler to verify that
the original intent is accurately reflected.
50 Identify variables/parameters to which model behavior is very sensitive.
51 Substantiates that the M&S application is developed to meet required standards, procedures, and
guidelines.
52 Using a state transition diagram, assess model accuracy by analyzing conditions under which a state
change occurs.
53 Run model to execute as many statements as possible.
54 Model and system outputs are compared using multivariate statistical techniques to capture correlation.
55 Assess model validity under extreme workload conditions.
56 Examines model structure for anomalies such as unconditional branches, excessive nesting, multiple
entry/exit points.
57 Decompose model into submodels. Compare the behavior of each submodel to the behavior of the
corresponding subsystem of the actual system.
58 Debugging tool to manipulate model execution while viewing the model at source code level.
59 Technique that shows path correctness for all computations.
60 Done by the compiler to ensure that language mechanics are correctly applied.
61 Test model at starting at highest level to base level.
62 Used to match elements of one form of the model to another such as requirements specification
elements to model design specification.
63 Refine raw trace data collected from a real system for testing a model.

V&V Techniques 8/15/01
RPG Reference Document 36

64 Examination by experts on output data, one from the model and one from the system for feedback in
correcting model representation.
65 Examines user-model interface to prevent errors during user’s interactions with model.
66 Tests human-in-the-loop and interactive simulations.
67 Display graphical images of model’s dynamic behavior during execution.
68 Meeting to detect and document faults, less formal than inspections.

References

Ackerman, A.F., Fowler, P.J., & Ebenau, R.G., “Software inspections and the industrial

production of software,” in Hans-Ludwig Hausen (Ed.), Software validation:
Inspection, testing, verification, alternatives, Proceedings of the Symposium
on Software Validation, pp. 13–40, Darmstadt, FRG, 1983.

Adrion, W.R., Branstad, M.A., & Cherniavsky, J.C., “Validation, verification, and testing
of computer software,” Computing Surveys, 14 (2), pp. 159–192, 1982.

Aigner, D.J., “A note on verification of computer simulation models,” Management
Science, 18 (11), pp. 615–619, 1972.

Allen, F.E. & Cocke, J., “A program data flow analysis procedure,” Communications of
the ACM, 19 (3), pp. 137–147, 1976.

Backhouse, R.C., Program construction and verification, Prentice-Hall International
(UK) Ltd., London, 1986.

Balci, O., “The implementation of four conceptual frameworks for simulation modeling in
high-level languages,” in M.A. Abrams, P.L. Haigh, & J.C. Comfort (Eds.),
Proceedings of the 1988 Winter Simulation Conference, pp. 287–295, IEEE,
Piscataway, NJ, 1988.

Balci, O., Bertelrud, A.I., Esterbrook, C.M., & Nance, R.E., “A picture-based object-
oriented visual simulation environment,” in C. Alexopoulos, K. Kang, W.R.
Lilegdon, & D. Goldsman (Eds.), Proceedings of the 1995 Winter Simulation
Conference, pp. 1333–1340, IEEE, Piscataway, NJ, 1995.

Balci, O. & Sargent, R.G., “A methodology for cost-risk analysis in the statistical
validation of simulation models,” Communications of the ACM, 24 (4), pp.
190–197, 1981.

Balci, O. & Sargent, R.G., “Some examples of simulation model validation using
hypothesis testing,” in H.J. Highland, Y.W. Chao, & O.S. Madrigal (Eds.),
Proceedings of the 1982 Winter Simulation Conference (pp. 620–620), IEEE,
Piscataway, NJ, 1982a.

Balci, O. & Sargent, R.G., “Validation of multivariate response models using Hotelling's
two-sample T2 test,” Simulation, 39 (6), pp.185–192, 1982b.

Balci, O. & Sargent, R.G., “Validation of multivariate response trace-driven simulation
models,” in A.K. Agrawala & S.K. Tripathi (Eds.), Performance '83 (pp. 309–
323), North-Holland, Amsterdam, 1983.

V&V Techniques 8/15/01
RPG Reference Document 37

Balci, O. & Sargent, R.G., “Validation of simulation models via simultaneous
confidence intervals,” American Journal of Mathematical and Management
Sciences, 4 (3&4), pp. 375–406, 1984.

Banks, J., Carson, J.S., & Nelson, B.L., Discrete-event system simulation (2nd ed.),
Prentice-Hall, Englewood Cliffs, NJ, 1996.

Barendregt, H.P., The lambda calculus: Its syntax and semantics, North-Holland, New
York, 1981.

Beizer, B., Software testing techniques (2nd ed.), Van Nostrand Reinhold, New York,
1990.

Birta, L.G. & Ozmizrak, F.N., “A knowledge-based approach for the validation of
simulation models: The foundation,” ACM Transactions on Modeling and
Computer Simulation (in press), 1996.

Chusho, T., “Test data selection and quality estimation based on the concept of
essential branches for path testing,” IEEE Transactions on Software
Engineering, SE-13 (5), pp. 509–517, 1987.

Cohen, K.J. & Cyert, R.M., “Computer models in dynamic economics,” Quarterly
Journal of Economics, 75 (1), pp. 112–127, 1961.

Damborg, M.J. & Fuller, L.F., “Model validation using time and frequency domain error
measures,” (ERDA Report No. 76-152), NTIS, Springfield, VA, 1976.

Deutsch, M.S., Software verification and validation: Realistic project approaches,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

Dijkstra, E.W., “Guarded commands, non-determinacy and a calculus for the derivation
of programs,” Communications of the ACM, 18 (8), pp. 453–457, 1975.

Dillon, L.K. (1990). Using symbolic execution for verification of Ada tasking programs.
ACM Transactions on Programming Languages and Systems, 12 (4), 643–
669.

Dobbins, J.H., “Inspections as an up-front quality technique,” in G.G. Schulmeyer & J.I.
McManus (Eds.), Handbook of Software Quality Assurance, pp. 137–177,
Van Nostrand-Reinhold Company, New York, 1987.

Dunn, R.H., Software defect removal, McGraw-Hill, New York, 1984.
Dunn, R.H., “The quest for software reliability,” in G.G. Schulmeyer & J.I. McManus

(Eds.), Handbook of Software Quality Assurance, pp. 342–384, Van Nostrand-
Reinhold Company, New York, 1987.

Emshoff, J.R. & Sisson, R.L., Design and use of computer simulation models,
MacMillan, New York, 1970.

Fairley, R.E., “An experimental program-testing facility,” IEEE Transactions on Software
Engineering, SE-1 (4), pp. 350–357, 1975.

Fairley, R.E., “Dynamic testing of simulation software,” in Proceedings of the 1976
Summer Computer Simulation Conference, pp. 708–710, Simulation Councils,
La Jolla, CA, July,1976.

V&V Techniques 8/15/01
RPG Reference Document 38

Fishman, G.S. &. Kiviat, P.J., “The analysis of simulation generated time series,”
Management Science, 13 (7), pp. 525–557, 1987.

Forrester, J.W., Industrial Dynamics, MIT Press, Cambridge, MA, 1961.
Fujimoto, R.M., “Parallel discrete event simulation,” Communications of the ACM, 33

(10), pp. 31–53, 1990.
Fujimoto, R.M., “Parallel discrete event simulation: Will the field survive?," ORSA

Journal on Computing, 5 (3), pp. 213–230, 1993.
Gafarian, A.V. & Walsh, J.E., “Statistical approach for validating simulation models by

comparison with operational systems,” in Proceedings of the 4th International
Conference on Operations Research, pp. 702–705, John Wiley & Sons, New
York, 1969.

Gallant, A.R., Gerig, T.M., & Evans, J.W., “Time series realizations obtained according
to an experimental design,” Journal of the American Statistical Association, 69
(347), pp. 639–645, 1974.

Garratt, M., “Statistical validation of simulation models,” in Proceedings of the 1974
Summer Computer Simulation Conference, pp. 915–926, Simulation Councils,
La Jolla, CA, July, 1974.

Hermann, C.F., “Validation problems in games and simulations with special reference to
models of international politics,” Behavioral Science, 12 (3), pp. 216–231,
1967.

Hollocker, C.P., “The standardization of software reviews and audits,” in G.G.
Schulmeyer & J.I. McManus (Eds.), Handbook of Software Quality Assurance,
pp. 211–266, Van Nostrand-Reinhold Company, NY, 1987.

Howden, W.E., “Reliability of the path analysis testing strategy,” IEEE Transactions on
Software Engineering, SE-2 (3), pp. 208–214, 1976.

Howden, W.E, “Functional program testing,” IEEE Transactions on Software
Engineering, SE-6 (2), pp. 162–169, 1980.

Howrey, P. & Kelejian, H.H., “Simulation versus analytical solutions,” in T.H. Naylor
(Ed.), The design of computer simulation experiments, pp. 207–231, Duke
University Press, Durham, NC, 1969.

Hunt, A.W., “Statistical evaluation and verification of digital simulation models through
spectral analysis,” unpublished doctoral dissertation, University of Texas at
Austin, 1970.

Khanna, S., “Logic programming for software verification and testing,” The Computer
Journal, 34 (4), pp. 350–357, 1991.

Kheir, N.A. & Holmes, W.M., “On validating simulation models of missile systems,”
Simulation, 30 (4), pp. 117–128, 1978.

King, J.C., “Symbolic execution and program testing,” Communications of the ACM, 19
(7), 385–394, 1976.

Kleijnen, J.P.C., Statistical Techniques in Simulation (Vol. 2), Marcel Dekker, NY, 1975.

V&V Techniques 8/15/01
RPG Reference Document 39

Knight, J.C. & Myers, E.A., “An improved inspection technique,” Communications of the
ACM, 36 (11), pp. 51–61, 1993.

Law, A.M. & Kelton, W.D., Simulation modeling and analysis (2nd ed.), McGraw-Hill, NY,
1991.

Manna, Z., Ness, S., & Vuillemin, J., “Inductive methods for proving properties of
programs,” Communications of the ACM, 16 (8), pp. 491–502, 1973.

Miller, D.K., “Validation of computer simulations in the social sciences,” in Proceedings
of the Sixth Annual Conference on Modeling and Simulation, (pp. 743–746).
Pittsburg, PA., 1975.

Miller, D.R., “Model validation through sensitivity analysis,” in Proceedings of the 1974
Summer Computer Simulation Conference, pp. 911–914, Simulation Councils,
La Jolla, CA, July, 1974a.

Miller, D.R., “Sensitivity analysis and validation of simulation models,” Journal of
Theoretical Biology, 48 (2), pp. 345–360, 1974b.

Miller, L.A., Groundwater, E.H., Hayes, J.E., & Mirsky, S.M., “Survey and assessment of
conventional software verification and validation methods,” Special Publication
NUREG/CR-6316, Vol. 2, U.S. Nuclear Regulatory Commission, Washington,
DC, 1995.

Myers, G.J., “A controlled experiment in program testing and code
walkthroughs/inspections,” Communications of the ACM, 21 (9), pp. 760–768,
1978.

Myers, G.J., The art of software testing, John Wiley & Sons, NY, 1979.
Naylor, T.H. & Finger, J.M. ”Verification of computer simulation models,” Management

Science, 14 (2), B92–B101, 1967.
Ould, M.A. & Unwin, C., Testing in software development, Cambridge University Press,

Great Britain, 1986.
Page, E.H. & Nance, R.E., “Parallel discrete event simulation: A modeling

methodological perspective,” in D.K. Arvind, R. Bagrodia, & J.Y-B. Lin (Eds.),
Proceedings of the Eighth Workshop in Parallel and Distributed Simulation
(PADS ‘94), pp. 88–93, IEEE Computer Society Press., Los Alamitos, CA,
July, 1994.

Paul, R.J., “Visual simulation: Seeing is believing?,” in R. Sharda, B.L. Golden, E.
Wasil, O. Balci, & W. Stewart (Eds.), Impacts of recent computer advances on
operations research, pp. 422–432, Elsevier, NY, 1989.

Perry, W., Effective methods for software testing, John Wiley & Sons, NY, 1995.
Prather, R.E. & Myers, J.P., Jr, “The path prefix software testing strategy,” IEEE

Transactions on Software Engineering, SE-13 (7), pp. 761–766, 1987.
Pressman, R.S., Software engineering: A practitioner’s approach (4th Ed.), McGraw-Hill,

NY, 1996.

V&V Techniques 8/15/01
RPG Reference Document 40

Ramamoorthy, C.V., Ho, S.F., & Chen, W.T., “On the automated generation of program
test data,” IEEE Transactions on Software Engineering, SE-2 (4), pp. 293–
300, 1976.

Rattray, C. (Ed.), Specification and verification of concurrent systems, Springer-Verlag,
NY, 1990.

Reynolds, C. & Yeh, R.T. “Induction as the basis for program verification,” IEEE
Transactions on Software Engineering, SE-2 (4), pp. 244–252, 1976.

Richardson, D.J. & Clarke, L.A., “Partition analysis: A method combining testing and
verification,” IEEE Transactions on Software Engineering, SE-11 (12), pp.
1477–1490, 1985.

Rowland, J.R. & Holmes, W.M., “Simulation validation with sparse random data,”
Computers and Electrical Engineering, 5 (3), pp. 37–49, 1978.

Sargent, R.G., “Validation and verification of simulation models,” in J.J. Swain, D.
Goldsman, R.C. Crain, & J.R. Wilson (Eds.), Proceedings of the 1992 Winter
Simulation Conference, pp. 104–114, IEEE, Piscataway, NJ, 1992.

Schach, S.R., “Software engineering (3rd ed.), Irwin, Homewood, IL, 1996.
Schruben, L.W. “Establishing the credibility of simulations,” Simulation, 34 (3), pp. 101–

105, 1980.
Shannon, R.E., Systems simulation: The art and science, Prentice-Hall, Englewood

Cliffs, NJ, 1975.
Sommerville, I., Software engineering (5th ed.), Addison-Wesley, Reading, MA, 1996.
Teorey, T.J., Validation criteria for computer system simulations, Simuletter, 6 (4), pp.

9–20, 1975.
Theil, H., Economic forecasts and policy, North-Holland, Amsterdam, The Netherlands,

1961.
Turing, A.M., “Computing machinery and intelligence,” in E.A. Feigenbaum & J.

Feldman (Eds.), Computers and thought, pp. 11–15,McGraw-Hill, NY, 1963.
Tytula, T.P., A method for validating missile system simulation models, (Technical

Report E-78-11), U.S. Army Missile R&D Command, Redstone Arsenal, AL,
June, 1978.

Van Horn, R.L., “Validation of simulation results,” Management Science, 17 (5), pp.
247–258, 1971.

Watts, D, Time series analysis,” in T.H. Taylor (Ed.), The design of computer simulation
experiments, pp. 165–179, Duke University Press, Durham, NC, 1969.

Whitner, R.B. & Balci, O., “Guidelines for selecting and using simulation model
verification techniques,” in E.A. MacNair, K.J. Musselman, & P. Heidelberger
(Eds.), Proceedings of the 1989 Winter Simulation Conference, pp. 559–568,
IEEE, Piscataway, NJ, 1989.

V&V Techniques 8/15/01
RPG Reference Document 41

Wright, R.D., “Validating dynamic models: An evaluation of tests of predictive power,” in
Proceedings of the 1972 Summer Computer Simulation Conference (pp.
1286–1296), Simulation Councils, La Jolla, CA, 1972.

Yourdon, E., Structured Walkthroughs (3rd ed.), Yourdon Press, NY, 1985.
Yucesan, E. & Jacobson, S.H. (1992). Building correct simulation models is difficult. In

J.J. Swain, D. Goldsman, R.C. Crain, & J.R. Wilson (Eds.), Proceedings of the
1992 Winter Simulation Conference, pp. 783–790, IEEE, Piscataway, NJ,
1992.

Yucesan, E. & Jacobson, S.H., “Intractable structural issues in discrete event
simulation: Special cases and heuristic approaches,” ACM Transactions on
Modeling and Computer Simulation (in press), 1996.

Yeh, R.T., “Verification of programs by predicate transformation,” in Current Trends in
Programming Methodology, Vol. 2 (pp. 228–247). Prentice-Hall, Englewood
Cliffs, 1977.

RPG References in this Document

select menu: RPG Core Documents, select item: “V&V Agent Role in the VV&A of

Federations”
select menu: RPG Core Documents, select item: “V&V Agent Role in the VV&A of

Legacy Simulations”
select menu: RPG Core Documents, select item: “V&V Agent Role in the VV&A of

New Simulations”
select menu: RPG Diagrams, select item: “Overall Problem Solving Process”
select menu: RPG Diagrams, select item: “VV&A and Federation Construction”
select menu: RPG Diagrams, select item: “VV&A and Legacy Simulation Preparation”
select menu: RPG Diagrams, select item: “VV&A and New M&S Development”
select menu: RPG Reference Documents, select item: “V&V Tools”
select menu: RPG Special Topics, select item: “Subject Matter Experts and VV&A”

Additional References

Balci, O., “Requirements for model development environment,” Computers &

Operations Research, 13 (1), pp. 53–67, 1986.
Balci, O. & Nance, R.E., “Simulation model development environments: A research

prototype,” Journal of Operational Research Society, 38 (8), pp. 753–763,
1987.

Derrick, E.J. & Balci, O., “A visual simulation support environment based on the
DOMINO conceptual framework,” Journal of Systems and Software, 31 (3),
pp. 215–237, 1995.

V&V Techniques 8/15/01
RPG Reference Document 42

Moose, R.L. & Nance, R.E., “The design and development of an analyzer for discrete
event model specifications,” in R. Sharda, B.L. Golden, E. Wasil, O. Balci, &
W. Stewart (Eds.), Impacts of recent computer advances on operations
research, pp. 407–421, Elsevier, NY, 1989.

Nance, R.E. & Overstreet, C.M., “Diagnostic assistance using digraph representations
of discrete event simulation model specifications,” Transactions of the SCS, 4
(1), pp. 33–57, 1987.

Overstreet, C.M. & Nance, R.E., “A specification language to assist in analysis of
discrete event simulation models,” Communications of the ACM, 28 (2), pp.
190–201, 1985.

Stucki, L.G., “New directions in automated tools for improving software quality,” in R.
Yeh (Ed.), Current trends in programming methodology, Vol. 2 (pp. 80–111,
Prentice-Hall , Englewood Cliffs, NJ 1977.

V&V Techniques 8/15/01
Appendix A A - 1

Appendix A: Validation Procedure Using Simultaneous
Confidence Intervals

The behavioral accuracy (validity) of a simulation with multiple outputs can be
expressed in terms of the differences between the corresponding model and system
output variables when the model is run with the same input data and operational
conditions that drive the real system. The range of accuracy of the jth model output
variable can be represented by the jth confidence interval (c.i.) for the differences
between the means of the jth model and system output variables. The simultaneous
confidence intervals (s.c.i.) formed by these confidence intervals are called the model
range of accuracy (m.r.a.) [Balci and Sargent, 1984].

Assume that there are k output variables from the model and k output variables from
the system as shown in the figure below.

Let () []µ µ µ µm
1
m

2
m

k
m, ,

′
= ..., and () []µ µ µ µs

1
s

2
s

k
s′

= , ,..., be the k dimensional vectors of
the population means of the model and system output variables, respectively.

Basically, there are three approaches for constructing the s.c.i. to express the m.r.a. for
the mean behavior.

om
2om

1 ok
m
−1 ok

m ok
sos

1 os
2 ok

s
−1

/1
m /2

m /q
m
−1 /q

m
Model Input Variables

Correspondence

Correspondence

Inference

Model Output Variables System Output Variables

SIMULATION
MODEL SYSTEM

emeemd

em1

emi

emg

emj

emh

ema emb emc

emi emj

emd

em1 emg emh

ema emb emc

System Input Variables

eme

/2
s/1

s /q
s
−1 /q

s

Model and System Characteristics

V&V Techniques 8/15/01
Appendix A A - 2

In Approach 1, the m.r.a. is determined by the 100 ()1−γ % s.c.i. for µ µm s− as

(1) []δ τ−

where []δ δ δ δ′ = 1 2, ,..., k represents lower bounds and []τ τ τ τ′ = 1 2, ,..., k represents
upper bounds of the s.c.i. The modeler can be 100 ()1−γ % confident that the true
differences between the population means of the model and system output variables
are simultaneously contained within (1).

In Approach 2, the 100 ()1 m−γ % s.c.i. are first constructed for µ m as

(2) []δ τm m,

where () []δ δ δ δm
1
m

2
m

k
m′

= , ,..., and () []τ τ τ τm
1
m

2
m

k
m′

= , ,..., . Then, the 100 ()1 s−γ % s.c.i.

are constructed for µ s as

(3) []δ τs s,

where () []δ δ δ δs
1
s

2
s

k
s′

= , ,..., and () []τ τ τ τs
1
s

2
s

k
s′

= , ,..., . Finally, using the Bonferroni

inequality, the m.r.a. is determined by the following s.c.i. for µ µm s− with a confidence

level of at least ()1− −γ γm s when the model and system outputs are dependent and

with a level of at least ()1− − +γ γ γ γm s m s when the outputs are independent [Kleijnen,
1975]:

(4) []δ τ τ δm s m s− −,

In Approach 3, the model and system output variables are observed in pairs and the
m.r.a. is determined by the 100 ()1−γ % s.c.i. for µ d , the population means of the
differences of paired observations, as

(5) []δ τd d,

where () []δ δ δ δd
1
d

2
d

k
d′

= , ,..., and () []τ τ τ τd
1
d

2
d

k
d′

= , ,..., .

The m.r.a. is constructed with the observations derived from the model and system
output variables by running the model with the same input data and operational
conditions that drive the real system. If the simulation is self-driven, then the model

V&V Techniques 8/15/01
Appendix A A - 3

input data come independently from the same populations or stochastic process as the
system input data. Because the model and system input data are independent of each
other, but come from the same populations, the model and system output data are
expected to be independent and identically distributed. Hence, Approach 1 or 2 can be
used. The use of Approach 3 in this case would be less efficient. If the simulation is
trace-driven, the model input data are exactly the same as the system input data. In
this case, the model and system output data are expected to be dependent and
identical. Therefore, Approach 2 or 3 should be used.

Sometimes, the model or simulation application sponsor or proponent may specify an
acceptable range of accuracy for a specific simulation. This specification can be made
for the mean behavior of a stochastic simulation as

(6) L Um s≤ − ≤µ µ

where []L L , L ,...,L1 2 k

′ = and []U U , U ,..., U1 2 k
′ = are the lower and upper bounds of

the acceptable differences between the population means of the model and system
output variables. In this case, the m.r.a. should be compared against Equation (6) to
evaluate model validity.

The shorter the lengths of the m.r.a., the more meaningful is the information they
provide. The lengths can be decreased by increasing the sample sizes or by
decreasing the confidence level. Such increases in sample sizes, however, may
increase the cost of data collection. Thus, a trade-off analysis may be necessary
among the sample sizes, confidence levels, half-length estimates of the m.r.a., data
collection method, and cost of data collection. For details of performing the trade-off
analysis, see Balci and Sargent, 1984.

V&V Techniques 8/15/01
Appendix B B - 1

Appendix B: Selecting V&V Techniques for Defect Detection

The table below shows the subset of the V&V techniques listed in the Common V&V
Technique Applications table that are considered useful for detecting software defects.
This subset was analyzed by a survey done to assess the types and frequency of
defects detected using conventional software verification methods [SAIC, 1993]. In the
survey, 52 types of defects were assessed, the defects falling into one of three
categories: requirements, design, and code.

Capability of V&V Techniques to Detect Software Defects

V&V Technique

Requirements
Defect Types

Detected
(Out of 13)

Design Defect
Types

Detected
(Out of 15)

Code Defect
Types

Detected
(Out of 24)

Assertion check 0 0 2
Branch test 0 2 6
Calling structure
analysis 1 5 15

Cause-effect graphing 2 2 1
Concurrent process
analysis 0 0 9

Condition test 0 0 12
Control flow analysis 1 3 9
Data flow analysis 3 0 12
Data interface test 2 4 3
Desk checking 0 0 5
Fault/Failure insertion
test 0 0 19

Field test 0 15 24
Inductive assertions 4 4 14
Inspections
Path test 2 8
Regression test 0 0 24
State transition
analysis 1 3 9

Statement test 0 0 2
Stress test 0 15 24
User interface analysis 8 8 3
Walkthroughs 0 0 14

The reference acknowledges that the survey was subjective in nature and ignored
questions of how well or how easily a defect could be found by a particular method.
However, the goal of the survey was to determine what techniques might be expected

V&V Techniques 8/15/01
Appendix B B - 2

to detect a particular type of flaw. In all, 13 requirements defects, 15 design defects,
and 24 code defects are defined. Survey results for all three categories are
summarized in the table below.

Results indicate that a user interface analysis is expected to detect most of the study’s
pre-defined 13 requirements defects, while field testing and stress testing are expected
to detect all of the 15 identified design defects. Top techniques for detecting the code
defects include field testing, stress testing, and regression testing. Similar results are
expected when applying these techniques to V&V of M&S.

The appearance of hyperlinks does not constitute endorsement by the DoD, DMSO, the
administrators of this web site, or the information, products or services contained therein. For
other than authorized activities such as military exchanges and Morale, Welfare and Recreation
sites, the DoD does not exercise any editorial control over the information you may find at these
locations. Such links are provided consistent with the stated purpose of this DMSO web site.

§ § § § § § §

